欢迎访问深圳自考网!网站为考生提供深圳自考信息服务,供学习交流使用,非政府官方网站,官方信息以广东省教育考试院为准。

报名热线:177-2280-6683

招生老师微信|深圳自考微信公众号

首页
自考服务: |报名报考 |报考须知 |考办联系方式 |考试时间安排表 |免考办理 |学历证明办理 |合并准考证办理 |转出、转入办理 |考籍信息更正办理
通知公告:

数据结构复习要点第七章图

编辑整理:深圳自考网    发布时间:2018-05-23 12:26:54    浏览热度:   [添加招生老师微信]
立即购买

《自考视频课程》名师讲解,轻松易懂,助您轻松上岸!低至199元/科!

图的逻辑结构特征就是其结点(顶点)的前趋和后继的个数都是没有限制的,即任意两个结点之间之间都可能相关。
图GraphG=(V,E),V是顶点的有穷非空集合,E是顶点偶对的有穷集。
有向图Digraph:每条边有方向;无向图Undigraph:每条边没有方向。
有向完全图:具有n*(n-1)条边的有向图;无向完全图:具有n*(n-1)/2条边的无向图;
有根图:有一个顶点有路径到达其它顶点的有向图;简单路径:是经过顶点不同的路径;简单回路是开始和终端重合的简单路径;
网络:是带权的图。

图的存储结构:·邻接矩阵表示法:用一个n阶方阵来表示图的结构是唯一的,适合稠密图。 ·无向图:邻接矩阵是对称的。
·有向图:行是出度,列是入度。
建立邻接矩阵算法的时间是O(n+n^2+e),其时间复杂度为O(n^2)
·邻接表表示法:用顶点表和邻接表构成不是唯一的,适合稀疏图。·顶点表结构 vertex | firstedge,指针域存放邻接表头指针。
·邻接表:用头指针确定。 ·无向图称边表;
·有向图又分出边表和逆邻接表;
·邻接表结点结构为 adjvex | next,
时间复杂度为O(n+e).,空间复杂度为O(n+e).。
图的遍历: ·深度优先遍历:借助于邻接矩阵的列。使用栈保存已访问结点。
·广度优先遍历:借助于邻接矩阵的行。使用队列保存已访问结点。

生成树的定义:若从图的某个顶点出发,可以系统地访问到图中所有顶点,则遍历时经过的边和图的所有顶点所构成的子图称作该图的生
成树。
最小生成树:图的生成树不唯一,从不同的顶点出发可得到不同的生成树,把权值最小的生成树称为最小生成树(MST)。
构造最小生成树的算法: ·Prim算法的时间复杂度为O(n^2)与边数无关适于稠密图。
·Kruskal算法的时间复杂度为O(lge),主要取决于边数,较适合于稀疏图。

最短路径的算法:·Dijkstra算法,时间复杂度为O(n^2).·类似于prim算法。

拓扑排序:是将有向无环图G中所有顶点排成一个线性序列,若∈E(G),则在线性序列u在v之前,这种线性序列称为拓扑序列。
拓扑排序也有两种方法:·无前趋的顶点优先,每次输出一个无前趋的结点并删去此结点及其出边,最后得到的序列即拓扑序列。
 ·无后继的结点优先:每次输出一个无后继的结点并删去此结点及其入边,最后得到的序列是逆拓扑序列。

本文标签:深圳自考 串讲笔记 数据结构复习要点第七章图

转载请注明:文章转载自(http://www.szzikao.cn

本文地址:http://www.szzikao.cn/zl/5407.html


《深圳自考网》免责声明:

1、由于考试政策等各方面情况的调整与变化,本网提供的考试信息仅供参考,最终考试信息请以省考试院及院校官方发布的信息为准。

2、本站内容部分信息均来源网络收集整理或来源出处标注为其它媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com